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Permanent gullies are common features in many landscapes and quite often they represent the dominant soil
erosion process. Once a gully has initiated, field evidence shows that gully channel formation and headcutmigra-
tion rapidly occur. In order to prevent the undesired effects of gullying, there is a need to predict the placeswhere
newgulliesmight initiate. Fromdetailed fieldmeasurements, studies have demonstrated strong inverse relation-
ships between slope gradient of the soil surface (S) and drainage area (A) at the point of channel initiation across
catchments in different climatic andmorphological environments. Such slope–area thresholds (S–A) can be used
to predict locations in the landscape where gullies might initiate. However, acquiring S–A requires detailed field
investigations and accurate high resolution digital elevation data, which are usually difficult to acquire. To cir-
cumvent this issue, we propose a two-step method that uses published S–A thresholds and a logistic regression
analysis (LR). S–A thresholds from the literature are used as proxies of fieldmeasurement. Themethod is calibrat-
ed and validated on a watershed, close to the town of Algiers, northern Algeria, where gully erosion affects most
of the slopes. The gullies extend up to several kilometres in length and cover 16% of the study area. First we re-
construct the initiation areas of the existing gullies by applying S–A thresholds for similar environments. Then,
using the initiation areamap as the dependent variablewith combinations of topographic and lithological predic-
tor variables, we calibrate several LR models. It provides relevant results in terms of statistical reliability, predic-
tion performance, and geomorphological significance. This method using S–A thresholds with data-driven
assessment methods like LR proves to be efficient when applied to common spatial data and establishes a meth-
odology that will allow similar studies to be undertaken elsewhere.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Permanent gullies, i.e. gullies that cannot be obliterated by
ploughing, are common features in many landscapes and often, like in
Mediterranean and arid environments, they represent thedominant pro-
cess of soil erosion by water (Vandekerckhove et al., 2000; Poesen et al.,
2002, 2003). Gully erosion is responsible for soil degradation, increase in
sediment delivery, and reduction of water quality. It is also responsible
for a decreasedwater travel time to rivers (and hence increased flooding
probabilities), for the filling up of ponds and reservoirs, and for the de-
struction of buildings, fences, and roads. Gully erosion is highly sensitive
to climate and land use changes (Poesen et al., 2002, 2003).

The initiation and the growth of a gully and gully system is complex
(Istanbulluoglu et al., 2002). From field evidence, it is known that gully
channel formation and headcut migration are usually very rapid follow-
ing the initiation of the gully (e.g., Rutherfurd et al., 1997; Sidorchuk,
al Africa, Department of Earth
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1999; Nachtergaele et al., 2002; Nyssen et al., 2006; Gómez Gutiérrez
et al., 2009a; Seeger et al., 2009). In order to prevent the undesired ef-
fects of gullies, there is a need to anticipate the placeswhere new gullies
might initiate.

To predict where gully erosion will occur in the landscape by the ex-
tension of an existing gully or the formation of a new gully is difficult
(Bull and Kirkby, 1997; Poesen et al., 2003, 2011). Gully initiation clearly
is controlled by a variety of environmental conditions that can be
modelled as threshold phenomena. Montgomery and Dietrich (1988,
1989, 1992, 1994) and Dietrich et al. (1992, 1993) were among the
first authors to explore topographic thresholds on the occurrence of ero-
sion channels. From detailed field measurements and the use of high-
resolution digital terrainmodels (DTMs), they found a strong inverse re-
lationships between slope gradient of the soil surface at the point of
gully initiation (S) and contributing drainage area (A, proportional to
runoff discharge) for a given environmental condition. The topographic
threshold is based on the assumption that in a landscape with a given
climate, pedology, lithology, and vegetation, for a given S, there exists
a critical A necessary to produce sufficient runoff for gully initiation
(Montgomery and Dietrich, 1988, 1989). For different environmental
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Fig. 1. General framework of the two-step method used to predict the susceptibility to
gully initiation.
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conditions and different gully initiating processes (e.g. Horton overland
flow, saturation overland flow, and shallow small landsliding) different
topographic thresholds apply (Montgomery and Dietrich, 1988;
Dietrich et al., 1992; Montgomery and Dietrich, 1994). Such slope-area
thresholds (S–A) are therefore a useful predictor to forecast the location
in the landscape where gullies might initiate (Montgomery and
Dietrich, 1992; Dietrich et al., 1993).

Other attempts to map susceptibility to gully initiation through the
use of S–A relationships have been carried out (e.g., Prosser and
Abernethy, 1996; Vandaele et al., 1996; Desmet et al., 1999;
Vandekerckhove et al., 2000; Istanbulluoglu et al., 2002; Kirkby et al.,
2003; Morgan and Mngomezulu, 2003; Vanwalleghem et al., 2003;
Hancock and Evans, 2006; Jetten et al., 2006; Pederson et al., 2006;
Lesschen et al., 2007; Svoray and Markovitch, 2009; Millares et al.,
2012). Although some of these studies were capable of predicting gully
location, they require detailed field measurements and high resolution
digital elevation data as input; which is inmost cases difficult to acquire.

Data-driven assessment methods have also been applied to predict
landscape susceptibility to gully erosion. In these methods combina-
tions of environmental factors controlling the occurrence of the existing
gullies are statistically evaluated, and quantitative predictions aremade
for current non-gully-affected areas with similar environmental condi-
tions (e.g. Meyer and Martinez-Casasnovas, 1999; Hughes et al., 2001;
Bou Kheir et al., 2007; Geissen et al., 2007; Vanwalleghem et al., 2008;
Gómez Gutiérrez et al., 2009b,c; Ndomba et al., 2009; Pike et al., 2009;
Kuhnert et al., 2010; Akgün and Türk, 2011; Conforti et al., 2011;
Eustace et al., 2011; Luca et al., 2011; Märker et al., 2011; Svoray et al.,
2012; Conoscenti et al., 2013). Thesemodels are simple in their concept,
do not necessarily need to rely on in situ field measurements, and have
proved to be capable of predicting gully location even when using pre-
dictor variables extracted from common spatial data that are readily
available for data-poor regions (e.g. global satellite-derived elevation
data, basic topographic and lithological maps, and aerial photographs).
A main advantage of these models is that the amount of information
they can consider through the use of a potentially large panel of envi-
ronmental factors can be just as important as the information contained
in S and A alone. However, the spatial resolution of these datasets is
often relatively low considering the actual size of the gullies and,
when field information is lacking, to distinguish between the gully initi-
ation area and its extension is difficult (Vanwalleghem et al., 2008;
Svoray et al., 2012). So far, most of these studies applying data-driven
methods did notmake this distinction and failed at predicting the actual
initiation area of the gullies.

The objective of our research is therefore to develop a quantitative
method gathering the advantages of both the threshold and the data-
driven approaches for allowing the susceptibility to gully initiation to
be predicted with readily available common spatial data. Our attention
will be focused on the original point of gully initiation, i.e. before erosion
leads to development of the gully. We propose a two-step method that
uses published data on S–A thresholds and a logistic regression analysis
(LR) (Fig. 1). LR is a multivariate statistical method widely used for the
prediction of the spatial occurrence of surface processes such as mass
movements (e.g. Dai et al., 2004; Van Den Eeckhaut et al., 2006; Rossi
et al., 2010; Guns and Vanacker, 2012; Bosco et al., 2013), and that has
already proved its appropriateness for gully erosion (e.g., Meyer and
Martinez-Casasnovas, 1999; Vanwalleghem et al., 2008; Pike et al.,
2009; Akgün and Türk, 2011; Luca et al., 2011; Svoray et al., 2012). LR
is a low data demanding technique, requiring predictor variables easily
extractable from common spatial data, and yields directly a probability
of occurrence of the studied process (Hosmer and Lemeshow, 2000).
Published S–A thresholds are used as field measurement proxies.

2. Material

In order to facilitate the method’s development and to focus on the
S–A thresholds, a region characterized by a complex topography with
a wide range of slope configurations and where environmental condi-
tions such as lithology and soils are favourable to gully development is
selected.

2.1. Study area

We focus on a 51 km2 sub-basin of the Isser River watershed in
northern Algeria where the environmental conditions are favourable
to gullying. The area is located approximately 80 km south east of Al-
giers in the Tell Atlas (Fig. 2). The climate is classified as Mediterranean
close to semi-arid conditions, especially during the driest years. The
average annual precipitation is approximately 400 mm. Precipitation
is often caused by thunderstorms and is irregularly distributed
throughout the year with a maximum in winter (70% of the precipita-
tion between October and March) and a minimum in summer (Touazi
et al., 2004).

The elevation of the sub-basin ranges from ~700 to ~1300 m above
sea level. The lithology consists mainly of Paleocene–Eocene marls and
calcareous marls (~70% of the total area), Cretaceous marls and lime-
stones (~20%), and Quaternary alluvial deposits (~10%) (Fig. 2). These
unconsolidated and poorly sorted materials are favourable conditions
for gully development (Poesen et al., 2003). The majority of soils in
this Mediterranean mountainous terrain are weakly developed Rego-
sols formed on the unconsolidated marls (Daoudi, 2008). The pattern
of vegetation and land use forms a mosaic of cultivated lands,
rangelands, and scrublands; ninety-five percent of the zone having a
sparse vegetation cover (Daoudi, 2008). The road network and building
infrastructures are of limited extent.

Gullying is a widespread process in the watershed extending over
most slopes (Fig. 2). Gully channels occupy 16% of the study area;
which corresponds to a relatively high proportion compared to other
watersheds in similar environments (Poesen et al., 2003). The perma-
nent gullies vary in size and in shape. They can extend up to several
kilometres in length and several tens of meters in width. In some
cases their depth can be up to 10 m (Daoudi, 2008). Some gullies have
a basic linear shape with one headcut linear gully (LG); the largest of
them extending principally in the Eastern side of the watershed
where the slope profiles tend to be more regular and the local relief is
higher (Fig. 2C). Gullies develop also into complex gully systems (GS)
that divide into several branches and multiple headcuts (Fig. 2B).
Some of them have one or several bifurcations that arise either at the
gully heador along the channel (Bull andKirkby, 1997). Geomorpholog-
ical evidence identifiable in aerial photographs of 1992 (Table 1) and
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Fig. 2. Location of the study area (51 km2) in northern Algeria. (A)Watershed with gully distribution, lithological sketch, and relief. The yellow bar across the river shows a reservoir dam
that was built after 1992. (B, C) Close-ups illustrating linear gullies (LG), complex gully systems (GS), and bank gullies (BG). Gully, lithology, and relief data are derived from the ancillary
data described in Table 1.

103O. Dewitte et al. / Geomorphology 228 (2015) 101–115
2009 and 2012Google Earth images, attest that soil erosion (and implic-
itly gullying) is currently active in this area: fresh sediment accumula-
tions in the river channel are visible as well as the filling up of a
recently built reservoir (Fig. 2A) that does not appear in 1992. It is nev-
ertheless impossible to infer about the current stage at which the gullies
Table 1
Ancillary spatial data used for the modelling.

Type Scale Date Source

Aerial photographs ~1:40 000 1992 Institut National de Cartographie et de
Télédétection – Algeria

Topographic map 1:50 000⁎ 1960⁎⁎ Institut Géographique National de
France (Feuille 111 – Souagui)

Lithological map 1:50 000 1961 Service de la Carte Géologique d'Algérie

⁎ Contour interval is 20 m.
⁎⁎ Compiled from aerial photographs taken in 1953.
are in their erosion cycle (active or stable). The linear gullies that extend
perpendicularly from both the north-east and south-east ridges in the
steepest parts of the watershed (Fig. 2C) are evenly spaced, suggesting
an example of self-organization in the landscape due to the uniform
properties of the lithology (Perron et al., 2009).

Concerning the processes at the origin of the gullies, it is verified in
the field that the few landslides present in the area (not visible on the
aerial photographs) are of very limited spatial extent and are not linked
to the occurrence of the gullies (Daoudi, 2008), which supports hydrau-
lic erosion as the dominant gully-initiating process and not mass move-
ment (Montgomery and Dietrich, 1994). Some gullies are probably the
result of several initiations occurring independently at a series of
knickpoints along the slope profile and connected to each other while
migrating (e.g., Pederson et al., 2006). Based on observations published
in other studies, we can assume that the majority of the gullies are re-
gressive and expanded by headcut migration (Poesen et al., 2002)
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Bank gullies (BG) should also be present in the watershed. Some of the
tributary channels of the river could be assumed to have partly initiated
as bank gullies, especially the short linear segments (Fig. 2B).

However, we do not know when the gullies initiated and what cli-
matic conditions prevailed at that time. Theymight be the result of sev-
eral initiation phases and cycles spanning an unknown period of time
(Vanwalleghem et al., 2005a; Pelletier et al., 2011; Dotterweich et al.,
2012).While it is known that during the last centuries the climatic con-
ditions of northern Algeria remained quite similar to the current ones,
with a recent shift towards drier conditions over the region (Touchan
et al., 2011), the vegetation cover and the land use characteristics
might be affected by more significant changes.

Wildfires frequently happen in Mediterranean environments and
their vegetation-induced changes can cause the occurrence of gullies
(Shakesby and Doerr, 2006). Also, with regard to the current land use
conditions in the watershed, it can be assumed that the initiation of
some gullies is a consequence of human-induced vegetation changes
and farming practice such as ploughing (maybe in combinationwith ex-
tremeweather conditions) (e.g., Poesen et al., 2003; Nyssen et al., 2006;
Zucca et al., 2006; Vanwalleghem et al., 2008; Frankl et al., 2011;
Pelletier et al., 2011). Although of limited extent in the watershed,
road construction may have also increased susceptibility to erosion
(Montgomery, 1994; Nyssen et al., 2002; Takken et al., 2008; Makanzu
Imwangana et al., 2014). Such assumptions about human impact give
phases of gully initiation that can easily span several centuries
(Poesen et al., 2003; Pelletier et al., 2011; Dotterweich et al., 2012).
2.2. Predictor variables

The ancillary spatial information available for the study area is
shown in Table 1. Aerial photographs taken in 1992 were used to map
the gullies presented in Fig. 2. The topographic and lithological maps
were used for extracting the predictor variables, i.e. the environmental
factors that are supposed to have a role in the occurrence of the gullies.
The raster maps representing the predictor variables were resampled at
the same grid size of 20 m; this resolution is a suitable value according
to the scale of the topographic map (1:50,000), its contour interval
(20 m) and the complexity of terrain (Hengl, 2006). This resolution
can distinguish between gully initiation area and gully extension area
(Fig. 3).

The predictor variables need to consider the prevailing environmen-
tal conditions before gullies initiated. Although, from a chronological
perspective, the topographic datawere derived from aerial photographs
that had been taken almost 40 years before those used for mapping the
gullies (respectively 1953 and 1992; see Table 1), it is certain that some
of these gullies developed before 1953 and had already shaped the land-
scape. The development of gullies implies the presence of scarps
delimiting the gully channels. However, at a scale of 1:50,000 and
with a contour interval of 20m, topographic variations such as those in-
duced by these scarps cannot be represented on themap. Therefore the
map gives a smoothed picture of the actual soil surface morphology, so
that it is a realistic assumption that the 20-m resolutionDTMwe used to
derive the predictor variables corresponds to the pre-erosion topo-
graphic conditions without gully scarp.

Nine potential predictor variables used as independent variables in
the modelling were extracted from the 20 m resolution DTM with
ArcGIS software:

• Primary topographic attributes: elevation (m), slope angle (de-
grees), slope aspect (degrees clockwise from north), profile curva-
ture (×10−2 m−1), planform curvature (×10−2 m−1), and
contributing drainage area (pixel);

• Secondary topographic attributes: Sediment Transport Capacity
Index (TCI), Stream Power Index (SPI), and Topographic Wetness
Index (TWI).
The attributes “elevation” and “slope aspect” are considered as fac-
tors reflecting the climatic conditions (spatial variation of precipitation,
temperature, and solar irradiation). The other primary attributes are
taken for their potential influence on the superficial water runoff (over-
land flow). Contributing drainage area was derived from the hydrolog-
ically corrected DTM.

The three secondary attributes are hydrologically-based compound
indiceswith the potential to predict the spatial distribution of soil prop-
erties having an impact on soil erosion (e.g., Daba et al., 2003;
Nefeslioglu et al., 2008; Kakembo et al., 2009; Pike et al., 2009;
Hancock and Evans, 2010; Conforti et al., 2011; Conoscenti et al., 2013).

TCI has been used to characterize erosion and deposition processes
and, in particular, the effect of topography on soil erosion by water
(Nefeslioglu et al., 2008; Pike et al., 2009; Conforti et al., 2011;
Conoscenti et al., 2013). TCI based on the stream power theory is analo-
gous to the slope length and steepness factor (LS) in the universal soil
loss equation (USLE; Wischmeier and Smith, 1978), but is applicable
to three-dimensional landscapes (Moore and Burch, 1986; Moore
et al., 1991, 1993). It (TCIM) can be expressed as:

TCIM ¼ L S ¼ As=a0ð Þm sinθ=b0ð Þn ð1Þ

where As is the specific catchment area or unit contributing area
(m2 m−1) defined as the upslope area draining across a unit width
of contour, θ is the slope angle (degrees), a0 = 22.13 m is the stan-
dard USLE plot length, b0 = 0.0896 m m−1 (or 9%) is the slope
grade of the standard USLE plot, and m and n are respectively for
the slope length factor L and the slope steepness factor S and vary ac-
cording to the topographic conditions. The coefficients m and n were
set to 0.6 and 1.3 respectively (Moore et al., 1993) and correspond
closely to values reported in other studies for similar topographies
(Moore and Burch, 1986; Renard et al., 1997; Nefeslioglu et al.,
2008; Pike et al., 2009; Conforti et al., 2011; Luca et al., 2011). In
this specific case study, As is given by the ratio of the upslope catch-
ment area to grid size or, in other words, the product of contributing
drainage area (in pixel) and grid size (e.g., Xu et al., 2008; Pike et al.,
2009; Terranova et al., 2009; Conforti et al., 2011; Luca et al., 2011;
Bosco et al., 2014). Assuming the flow width is invariant and equal
to the grid size is generally the best approach in most practical cir-
cumstances (Chirico et al., 2005). Similarly to the USLE and the re-
vised universal soil loss equation (RUSLE) models where a
maximum length of slope has to be considered (Wischmeier and
Smith, 1978; Renard et al., 1997; Bosco et al., 2014), we set a maxi-
mum value of flow accumulation equal to 10 pixels. This value corre-
sponds to an accumulated slope length of 200 m, which falls within
the range of most measured slope lengths (McCool et al., 1997).

In order to accommodate to more complex slopes, two other ap-
proaches were applied to compute the slope steepness factor S. The ap-
proach of McCool et al. (1987) uses two functions: one for slopes b9%
and another for slopes N9% to compute the factor (SMc):

SMc ¼ 10:8 sinθþ 0:03 whenslope b 9% ð2Þ

SMc ¼ 16:8 sinθ−0:50 whenslope ≥ 9% ð3Þ

The approach of Nearing (1997) for computing S is based on a single
function representative of all the slopes and that, in addition to McCool
et al. (1987), is better at allowing for slopes greater than 22% to be con-
sidered. The resultant logistic equation to compute the factor (SN) is
given by:

SN ¼ −1:5þ 17= 1þ exp 2:3–6:1 sinθð Þ½ � ð4Þ

TCI values were therefore derived by replacing S in Eq. (1) by
Eqs. (2)–(4): TCIMc and TCIN.



Fig. 3. Steps to extract the initiation areas (in red) of the existing gully network and to construct the binary variable (presence and absence of initiation) fromwhich the dependent variable
used in themodelling is derived. The stable area (in light grey) represents the placeswhere no gully initiation associatedwith the existing gully network occurred. (A) Every gully is a potential
initiation area (in orange) since the initiation areas have to lie within the mapped gully network. (B) S–A threshold areas (in green) are places where the thresholds are reached outside the
mapped gullies within the stable areas. Initiation areas (in red) are places where the thresholds are reachedwithin the gully network. (C) Each initiation is delimited by a 2-pixel uncertainty
buffer area (in white). (D) The binary variable shows 1849 initiation areas (presence) and a stable area (absence). The rock outcrop areas (dark grey) are not part of the binary variable.
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TWI reflects the tendency of water to accumulate at any point in the
catchment and the tendency of gravitational forces to move that water
downslope (Moore et al., 1991; Quinn et al., 1991). It has been used
for characterizing the spatial distribution of zones of surface saturation
and soil water content in a landscape (Daba et al., 2003; Lesschen
et al., 2007; Nefeslioglu et al., 2008; Pike et al., 2009; Hancock and
Evans, 2010; Conforti et al., 2011; Luca et al., 2011; Conoscenti et al.,
2013). TWI can be expressed as:

TWI ¼ ln As= tanθð Þ ð5Þ

SPI is directly proportional to streampower and it is ameasure of the
erosive power of overland flow (Moore et al., 1991). SPI is frequently
used for estimating soil erosion by water (e.g., Daba et al., 2003;
Nefeslioglu et al., 2008; Kakembo et al., 2009; Pike et al., 2009; Akgün
and Türk, 2011; Conforti et al., 2011; Luca et al., 2011; Conoscenti
et al., 2013) and is expressed as:

SPI ¼ As tanθ ð6Þ
DTM resolution has an impact on the accuracy of the predictors
(Quinn et al., 1991; Luca et al., 2011). For instance, it affects slope
angle accuracy especially in areas of steep elevation changes and can
cause a systematic underestimation of the slope gradient (Chang and
Tsai, 1991; Florinsky, 1998). In addition, intrinsic errors related to the
DTM can also impact the reliability of the predictors. The errors are
mainly due to the inherent inaccuracy of the topographic map, the dig-
italization of the contour intervals, and the interpolation of the grid
(Dewitte et al., 2008). Although their relative impact is difficult to quan-
tify since we have no additional reference topographic material, it can
be more or less important according to the type of variable considered.
For instance, regarding “elevation” the relative impact is negligible in
this specific region since it would be an error of a few tens of metres
maximum for a local relief of several hundreds of meters. On the other
hand, for the variables directly derived from the DTM, the impact
could be more significant, especially where the topographic surface is
less steep (Chang and Tsai, 1991; Florinsky, 1998). Among the primary
topographic attributes, contributing drainage area should be the most
sensitive to these errors. A small error in elevation canmodify the direc-
tion of the flowpath andhence its accumulation (Quinn et al., 1991). If it
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happens in the upslope part of the watershed, close to the drainage di-
vide where the accumulation values are small, such a modification
should be very limited. On the other hand, the accumulations are larger
downslope, and a modification in the flow direction can give a pixel a
value far from the reality. Along the scarp line of a gully, the variability
of flow accumulation can be very important from one pixel to another.
However, if we assume that the DTM errors are randomly distributed,
no trend should appear. The errors along the gully systems should con-
cern only small groups of pixels randomly spread out and independent
from each other. Actually, the impact of the errors on the real pattern of
flow accumulation, and to a lesser extent on the other primary
topographic attributes, should be very limited. It has however to be con-
sidered in the evaluation criteria of the model and in their geomorpho-
logical significance.

In addition to the topographic derivatives, lithology is also a poten-
tial predictor variable. Even though the study area is in a quite homoge-
neous lithological context, it is expected that this parameter can help in
understanding the spatial occurrence of gully initiation. This predictor is
composed of four classes directly derived from the lithological map:
marls, calcareous marls, marls and limestones, and alluvial deposits
(Fig. 2).

Land use and land cover conditions are probably of primary impor-
tance for the initiation of the gullies in this region (Vandekerckhove
et al. 2000; Nyssen et al., 2002, 2006; Lesschen et al., 2007; Takken
et al., 2008; Frankl et al., 2011). However, as we do not know the age
of the gullies, such analysis is problematic. Furthermore, the informa-
tion that needs to be collected to infer about historical vegetation condi-
tions usually requires an in-depth investigation, which is in
contradictionwith this research objective that is to use readily available
common spatial information. Therefore information on vegetation
cover will not be considered in the prediction model. In a similar way,
the spatial variability of soil characteristics whose very local variation
might be one of the key factors for explaining gully initiation and dy-
namics (Vandekerckhove et al., 2000; Istanbulluoglu et al., 2005), is
not considered either because such data are unavailable.

3. Reconstruction of the gully initiation areas

3.1. Determining the S–A thresholds from the literature

The present approach is based on the consideration that the use of
published data of S–A thresholds is a valid and useful concept to recon-
struct the original area of gully initiation. However, the reliability of
some measurements may be questioned. Ideally, topographic thresh-
olds should be measured at the gully initiation point (Vandekerckhove
et al., 2000; Nachtergaele et al., 2001; Vanwalleghem et al., 2003). How-
ever, in the literature, the distinction between the S–A threshold at the
gully head and that at the gully initiation point is often unclear. Al-
though the initiation point remains the same over a gully’s lifetime,
the gully head does change, unless we speak of gullies that grow not
by regressive but by forward erosion. This can give different values as,
for instance, A is shrinking with the upslope migration of the gully
(Nyssen et al., 2002). In addition, the methodology used to assess S
and A also affects the topographic thresholds. For example, local S de-
rived from topographic maps usually underestimates local S measured
in the field (Poesen et al., 2002, 2003). The threshold values can also
vary according to the resolution of the DTM (Hancock and Evans,
2006; Nazari Samani et al., 2009; Millares et al., 2012). We therefore
aim to obtain average thresholds in order to reduce the potential effect
of the inherent uncertainty linked to the published values.

Since the topographic thresholds can vary with lithology, soil char-
acteristics, vegetation and land use, climate and fire regime
(Montgomery and Dietrich, 1988, 1994; Prosser and Slade, 1994;
Vandekerckhove et al., 2000; Poesen et al., 2002; Hyde et al., 2007;
Hancock and Evans, 2010), our aim is to obtain average values represen-
tative of the study area and the assumed general conditions that lead to
gully initiation. We focused our attention only on thresholds measured
for permanent gullies since measurements at the gully heads indicate
that the topographical thresholds for permanent gully formation are
significantly higher compared to ephemeral gully formation (Poesen
et al., 2003; Vanwalleghem et al., 2005b). To consider thresholds that
correspond to the climatic conditions that prevailed when the gullies
initiated, we relied on the assumptions made in Section 2.1 and consid-
ered values that were measured in arid, semi-arid and Mediterranean
environments (Table 2). For each region presented in Table 2, we con-
sidered the maximum and the minimum values of the dataset for both
the slope gradient and the drainage area thresholds.

The thresholds can vary if the channel initiation is due to overland
flow or landsliding (Montgomery and Dietrich, 1994). It is usually
found that channels that initiate when the critical slope gradient value
is higher than 0.5 m m−1 are usually associated with mass movement
processes, whereas incision by overland flow is dominant in more gentle
areas (Montgomery and Dietrich, 1988, 1989, 1994; Prosser and
Abernethy, 1996; Vandekerckhove et al., 2000; Zucca et al., 2006;
Nazari Samani et al., 2009). Since we focused on gullies triggered by
water, we did not consider threshold values of the gullies having a critical
slope gradient higher than 0.5 mm−1. The maximum and the minimum
values of the threshold datasets of each region presented in Table 2 were
therefore adjusted accordingly. Hence, the values for the critical slope that
we consider in this study are decreased to a maximum of 0.5 m m−1

when they are initially above (See column “max*” in Table 2). In some re-
gions, the gullies with the critical slope value above 0.5 m m−1 corre-
spond to the smaller drainage areas (Montgomery and Dietrich, 1988,
1989). In this case, the non-consideration of the thresholds of these
gullies implies the adjustment of the minimum drainage values towards
a higher limit (See column “min**” in Table 2).

The average thresholdswere calculated from the values in Table 2. It
suggests that the actual gullies initiated in areas where critical topo-
graphic slope angles of the soil surface range from 6° to 25° and
where the drainage areas extend from 0.21 to 3.54 ha. Threshold lines
for gully development can be represented by a power-type equation
(Vandaele et al., 1996; Poesen et al., 2011): S=aAb with a and b coeffi-
cients depending on the environmental characteristics. It could be pos-
sible to compute such a threshold line for the present study by
averaging the coefficients computed for the various regions presented
in Table 2. However, such an approach would not have permitted to
consider the landslide issue and to adjust the thresholds accordingly.

3.2. Use of the S–A thresholds to locate the gully initiation areas

The reconstructed gully initiation areas have to be in the actual gully
network thatwasmapped from the aerial photographs. In addition, they
have to fall within the range of the average S–A thresholds determined
from the literature (Table 2). Once the initiation areas are extracted, ad-
ditional processing is needed for the susceptibility analysis (Fig. 1). The
aim is to construct a binary variable (i.e. presence or absence) that lo-
cates the places where the existing gullies initiated (i.e. “initiation
area”) or the places where they did not initiate (i.e. “stable area”). The
dependent variable used for the LR modelling will be derived from the
binary variable.

The binary variable was extracted in four steps (Fig. 3):

(A) Removal of the area potentially most affected by bank gullying;
(B) Application of the average S–A thresholds extracted from litera-

ture (Table 2);
(C) Consideration of a buffer of uncertainty around each initiation

area;
(D) Removal of the rock outcrop areas.

The river banks are the area potentially most affected by bank gully-
ing. From the interpretation of the aerial photographs it was not feasible
to identify bank gullies from others. To reduce the possibility of consid-
ering this process in the analysis, a 100 m buffer zone along the river



Table 2
Threshold values of critical slope gradient of soil surface (S) and drainage area (A) inferred for permanent gully development (initiation) in a range of arid and semi-arid environmentswith
Mediterranean characteristics. The values are taken from the literature. For each region we take the minimum and maximum values of the dataset. The values in bold in columns “max*”
and “min**” correspond to adjusted values to consider slope gradients not higher than 0.5 m m−1. Underlined numbers are the average values considered for this study.

Region Land use Slope gradient
(m m−1)

Drainage area (ha) Reference

min max max⁎ min min⁎⁎ max

Southern Sierra Nevada, California Open oak woodland and grassland 0.15 0.7 0.5 0.6 0.9 8 Montgomery and Dietrich, 1988
Tennessee Valley, San Francisco, California Grassland and coastal prairie 0.17 0.9 0.5 0.12 0.4 4 Montgomery and Dietrich, 1988, 1989
Stanford Hills, San Francisco, California Open oak woodland and grassland 0.2 0.35 0.35 0.4 0.4 2.5 Montgomery and Dietrich, 1994
Northern Humboldt Range, Nevada Rangeland 0.1 0.4 0.4 0.04 0.04 1.5 Montgomery and Dietrich, 1994
Gungoandra catchement, New South Wales, Australia Pasture with sparse vegetation 0.04 0.7 0.5 0.3 0.3 3 Prosser and Abernethy, 1996
Sierra de Gata, Almeria, SE Spain Rangeland 0.08 0.5 0.5 0.02 0.02 3 Vandekerckhove et al., 2000
Alentejo, S Portugal Cropland and rangeland 0.06 0.5 0.5 0.02 0.02 0.9 Vandekerckhove et al., 2000
Lesvos island, Greece Rangeland 0.25 0.75 0.5 0.007 0.007 1.5 Vandekerckhove et al., 2000
Central-Eastern Sardinia, Italy Pasture 0.05 1.1 0.5 0.02 0.02 2 Zucca et al., 2006
Boushehr-Samal watershed, Southwestern Iran Rangeland 0.01 0.7 0.5 0.003 0.003 9 Nazari Samani et al., 2009
Average 0.111 0.66 0.475 0.153 0.211 3.54
Average slope angle (degrees) 6 33 25

⁎ Upper slope gradient limit is decreased to 0.5 m m−1 where landslides are reported.
⁎⁎ Minimum drainage area values adjusted according to the decreasing to 0.5 m m−1 of slope gradient values.
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was removed from the study area (Fig. 3A). The buffer zone was esti-
mated from the aerial photographs. The average S–A thresholds from
Table 2 were then applied to the remaining watershed topography.
Only the areas where the thresholds are reached within the actual
gully network are considered as initiation areas (Fig. 3B).

As a result of the inaccuracy related to the topographic predic-
tors, the grid resolution, and the delineation of the gullies from the
aerial photographs, we cannot assure that a pixel located in a “stable
area” just next to an “initiation area” is strictly associated with a
place that did not undergo erosion during the initiation phase.
Therefore, a buffer area of 2 pixels (i.e. 40 m) was defined around
all the initiation places (Fig. 3C). This buffer is not considered as a
part of the binary variable. Several initiation areas can extent
along a gully; the other parts of the gully being part of the buffers
and the stable area.

In total, 1849 initiation areas were extracted (Fig. 3D). Their size
varies from 1 to 28 pixels; 56% of the areas having only one pixel.
Their spatial distribution along the gullies is consistent with the geo-
morphological hypotheses made in Section 2.1. There is at least one ini-
tiation area for each gully systemand their position is in agreementwith
the hypothesis of a regressive gully (Fig. 3C). When several initiations
appear along a gully system, it also confirms the hypothesis that some
channelsmay be the result of several independent initiations connected
to each other while extending (e.g., Pederson et al., 2006). Logically,
there is no initiation area along the ridgetops delimiting the watershed,
where drainage area is small and topography is most prone to diffuse
flow (Dietrich et al., 1992, 1993).

In the steepest areas of the watershed, along the north-east and
south-east ridges (Fig. 2A), where initiation areas aremissing, slope an-
gles are frequently higher than 40°. From the aerial photographs and
Google Earth images, the stratigraphy of the Eocene calcareous marls
is clearly identifiable in these steep terrains, attesting the absence or
the very poor development of soil. In these areas of rock outcrop, soil
erosion linked to the development of a gully is therefore very limited
or even impossible. For this reason, these outcrops were not considered
as being part of the binary variable (Fig. 3D). The binary variable is
therefore smaller in extent than the initial watershed, the rock outcrops
being removed from the stable (non-initiation) area. The rock outcrop
areaswere nevertheless kept as part of the study area for the computing
of the predictor variables. The rock outcrops might indeed constitute
upper parts of contributing drainage areas used for the location of
gully initiation places. The 1849 initiation areas constitute the
“presence” of the binary variable and represent 5% of its total extent,
whereas the stable area constitutes the “absence” and represents the re-
maining 95%.
4. Susceptibility modelling

The initiation areamappresented in Section3.2 showswhere the ac-
tual gully network could have started. Based on the S–A thresholds in-
formation alone, we could also try to predict the susceptibility to new
gullies (Fig. 3B). However, because of the poor quality of the data and
the absence of field measurements, we used published field knowledge
with a data-driven modelling approach such as the LR (Fig. 1) instead.

Since lithology is the only parameterwhich is not derived from topo-
graphic data, there is a need to see how the approach is sensitive to this
predictor. For this purpose, we must test LR calibrations with and with-
out the consideration of lithology in the initial dataset of predictor var-
iables. In addition, using the factors “contributing drainage area” and
“slope gradient” straight away in LR models might be seen as a circular
flawas these two predictorswere used to define the dependent variable
(Fig. 1). Calibrations will also be performed omitting them. Overall, four
different LR models will be calibrated using four different datasets of
predictor variables (Table 3):

• Dataset 1 that gives “Model ALL”: the LRmodel is derived from a set of
data that initially includes all the predictors variables;

• Dataset 2 that gives “Model ALL-Litho”: the LRmodel is derived from a
set of data that initially includes all the predictor variables except
“lithology”;

• Dataset 3 that gives “Model ALL-AS”: the LR model is derived from a
set of data that initially includes all the predictor variables except
“contributing drainage area” and “slope gradient”;

• Dataset 4 that gives “Model ALL-AS-Litho”: the LR model is derived
from a set of data that initially includes all the predictor variables ex-
cept “contributing drainage area”, “slope gradient” and “lithology”.

4.1. Logistic regression

Stepwise LR was adopted to find the best-fitting model describing
the relationship between the dependent variable (Y) and a set of inde-
pendent (predictor) continuous and categorical variables (x1, x2,…,xn).
The outcome, or dependent variable, is binary or dichotomous, coded
as 0 or 1, representing, absence or presence of the gully initiation places,
respectively. The result of the regression can be interpreted as the prob-
ability of one state of the dependent variable. For the probability of oc-
currence of gully initiation, given independent variables, the logistic
response function can be written as (Hosmer and Lemeshow, 2000):

P Y ¼ 1ð Þ ¼ π xð Þ ¼ 1= 1þ exp– β0 þ β1x1 þ β2x2 þ…þ βnxnð Þ½ � ð7Þ



Table 3
Results of the four logistic regressionmodels for gully initiation susceptibility assessment. The table shows the coefficient calibrated for the predictor variables that significantly (P b 0.05)
influence the spatial distributions of the gully initiations.

Model ALL Model ALL-Litho Model ALL-AS Model ALL-AS-Litho

Coefficient Order of
inclusion

Coefficient Order of
inclusion

Coefficient Order of
inclusion

Coefficient Order of
inclusion

Predictor variable (P b 0.05) (P b 0.05) (P b 0.05) (P b 0.05)

Intercept −2.905 −5.007 2.466 −0.130 3
Elevation −0.005 3 −0.003 3 −0.006 3 −0.003 no
Slope gradient 0.226 2 0.204 2 no
Slope aspect

North (ref.) 6
East 0.706 11 0.815 8 0.698 10 0.794 5
South 0.662 10 0.932 7 0.638 11 0.897 4
West 0.931 8 1.012 4 0.898 5 0.970 9

Profile curvature 0.171 12 0.167 9 0.193 12 0.178 2
Planform curvature −1.401 1 −1.409 1 −1.176 2 −1.196 no
Contributing drainage area −0.025 6 −0.024 6 no col
Sediment Transport Capacity Index (TCI M)⁎ col col col col
TCI Mc⁎ col col col 1
TCI N⁎ col col 0.247 1 0.231 7
Stream Power Index (SPI) col col −0.003 7 −0.003 8
Topographic Wetness Index (TWI) 0.829 5 0.777 5 0.205 9 0.201 no
Lithology no

Marls (ref.)
Calcareous marls −1.502 7 −1.457 6
Marls and limestones −1.096 4 −1.074 4
Alluvial deposits −1.127 9 −1.145 8

Col = variables are not included in the logistic regression modelling as they are collinear with other predictor variables.
No = variable not included in the initial dataset from which the LR model is calibrated.
(ref.) = reference category of the dummy variable.
⁎ TCI adapted from Moore and Burch (1986); McCool et al. (1987), and Nearing (1997). See Eqs. (1), (2), and (3).
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where π (x) is the probability of occurrence, or susceptibility, of gully
initiation, β0 is the intercept, and βi is the coefficient for the indepen-
dent variable xi. To fit the LR model in Eq. (7), the values of β0 and βi,
the unknown parameters, are estimated by the maximum likelihood
method. The output probability values range from 0 to 1, with 0 indicat-
ing a 0% of chance of gullying and 1 indicating a 100% probability. In
order to model π (x), Eq. (7) is linearized with the logit transformation.
The logit, or logarithm of the odds (i.e. the probability of “gully initia-
tion” divided by the probability of “non-initiation”), is linear in its
parameters:

log π xð Þ=1−π xð Þð Þ ¼ β0 þ β1x1 þ β2x2 þ…þ βnxn ð8Þ

The dependent variable used in LR was directly derived from the bi-
nary variable computed in Section 3.2 (Fig. 3D). However, this binary
variable needed some additional processing in order to ensure the
best fitting performance of themodel. Only one pixel was randomly se-
lected for representing each initiation area in order to avoid possible
spatial autocorrelation (Hosmer and Lemeshow, 2000; Diniz-Filho
et al., 2003; Vanwalleghem et al., 2008); a cell adjacent to a (non-) ini-
tiation cell tending also to be (non-) initiation cell. The 1849 initiation
pixels of the dependent variable represent 44% of the total area covered
by the initiations. Moreover, an equal proportion of initiation cells and
non-initiation cells was selected in order to avoid prevalence, i.e. a con-
siderable difference between initiation-affected and initiation-free
areas (Hosmer and Lemeshow, 2000; Dai et al., 2004; Begueria, 2006).
Stratified random sampling of 1849 cells located in the stable area, i.e.
outside the gully initiation areas (Fig. 3D) was therefore preformed.

As the validity of the model needs to be measured (Chung and
Fabbri, 2003; Brus et al., 2011), the sample of 3698 cells (2 × 1849)
was partitioned randomly into a calibration dataset containing 80% of
the cells (2958 pixels, i.e. 1479 initiation pixels and 1479 non-
initiation pixels) and a validation dataset containing the remaining
20% of the cells; which is a good trade-off with regard to the number
of predictor variables (Fielding and Bell, 1997). The LR procedure was
applied to the calibration dataset that represents 5% of the study area.
LR requires coding a categorical variable withm categories into am-
1 dichotomous dummy variables and an additional reference category
(Table 3). In this case, the category that covers the larger spatial extent
was used as the reference category for each categorical variable. After
the coding of the categorical variables, a multicollinearity analysis was
performed among the independent variables; a model fitted via LR
being sensitive to the collinearities (Hosmer and Lemeshow, 2000).
Using the SAS software, the variance inflation factor (VIF) and the toler-
ance (TOL) statistics produced by linear regressionwere used for the di-
agnostic. Variables with VIF N 2 and TOL b 0.4 were excluded from the
logistic analysis (Allison, 2001; Van Den Eeckhaut et al., 2006). Then
stepwise LR was applied in order to select the best predictor variables
to explain the occurrence of gully initiation.

4.2. Fitting performance of the susceptibility models

The fitting performance and the uncertainty of the calibrated gully
susceptibility models were estimated using standard methods: four-
fold plots (e.g. Rossi et al., 2010), Receiver Operating Characteristic
(ROC) curves (e.g. Begueria, 2006; Van Den Eeckhaut et al., 2006;
Vanwalleghem et al., 2008; Gómez Gutiérrez et al., 2009b; Rossi et al.,
2010; Akgün and Türk, 2011; Eustace et al., 2011; Märker et al., 2011),
and success rate and prediction rate curves (e.g. Chung and Fabbri,
2003; Guzzetti et al., 2006; Dewitte et al., 2010; Luca et al., 2011;
Conoscenti et al., 2013).

A four-fold plot is a visual representation of a confusion matrix that
summarizes the number of true positives (TP), true negatives (TN), false
positives (FP), and false negatives (FN). For our research, the decision
probability threshold to classify a pixel as a initiation or non-initiation
area is set at a typical value of 0.5 given the equal number of gully and
non-gully initiation points in the calibration sample (Fielding and Bell,
1997).

The ROC curve allows the predictive power of a model to be
assessed independently of a specific probability threshold (Fielding
and Bell, 1997; Begueria, 2006). It plots all the combinations of “sen-
sitivity” (y-axis) vs. 1 – “specificity” (x-axis) that are obtained for an



Table 4
Association between gully initiation and the predictor variables (significance
level = 0.01). These tests are applied to the calibration dataset.

Predictor variable χ2 Cramer's V

Elevation 203.5 0.262
Slope gradient 949.3 0.567
Slope aspect 296.5 0.317
Profile curvature 436.8 0.384
Planform curvature 694.8 0.485
Contributing drainage area 1221.8 0.643
Sediment Transport Capacity Index (TCI M)⁎ 1335.9 0.672
TCI Mc⁎ 1386.7 0.685
TCI N⁎ 1305.1 0.664
Stream Power Index (SPI) 1275.1 0.657
Topographic Wetness Index (TWI) 838.1 0.532
Lithology 83.1 0.168

⁎ TCI adapted fromMoore and Burch (1986); McCool et al. (1987), and Nearing (1997).
See Eqs. (1), (2), and (3).
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entire range of possible thresholds. The “sensitivity”, or true positive
rate, is TP/(TP+ FN), and 1 – “specificity”, or false positive rate, is 1 –

TN/(FP + TN), which is equivalent to FP/(FP + TN). The “sensitivity”
is the proportion of pixels containing known gully initiations that
are correctly classified as susceptible, and “specificity” is the propor-
tion of pixels free of initiation classified as initiation-free. The area
under the ROC curve, abbreviated AUC, is a measure of discrimina-
tion that summarizes the information contained in a plot (Hosmer
and Lemeshow, 2000). AUC = 0.5 means no discrimination or
Fig. 4. Susceptibility maps portraying the four g
random forecast, whereas AUC = 1 means perfect discrimination.
The higher the curve above the diagonal line (i.e. AUC = 0.5), the
better the model. In practice it is extremely unusual to observe
AUC greater than 0.9 (Hosmer and Lemeshow, 2000).

Success rate and prediction rate curves are both obtained by varying
the decision threshold and comparing the percentage of the total area of
known initiations in each susceptibility class with the percentage area
of the susceptibility class. The curves plot the cumulative percentage
of gully initiation area in each susceptibility class (y-axis) against the re-
spective portions of the study area ranked frommost to least susceptible
(x-axis). Success rate curves are constructed considering the gullies of
the calibration dataset that was used for the susceptibility model,
whereas prediction rate curves are determined on the gullies of the val-
idation dataset. In this study, since we are using an equal proportion of
gully pixels and gully-free pixels, the success rate and prediction rate
curves are, like the ROC curves, not sensitive to prevalence.

To further investigate the reliability of the susceptibility assessments
obtainedwith the calibration dataset, the estimates for themodel errors
in each pixel were obtained adopting a “bootstrapping” re-sampling
technique using the same gully initiation and thematic information
but selecting a reduced number of pixels (Guzzetti et al., 2006;
Kuhnert et al., 2010; Rossi et al., 2010). An ensemble of 200 susceptibil-
ity calibration runs was performed, each time using 2366 pixels (1183
gully and 1183 non-gully) randomly selected, corresponding to 80% of
the total number of grid cells of the calibration dataset. The mean (μ)
and the standard deviation (σ) for the probability (susceptibility) esti-
mates of each pixel were obtained from the 200 model runs. These
ully initiation models presented in Table 3.
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statistics are shown in a graph where the two standard deviations (2σ)
of the susceptibility estimate (y-axis) are plotted against their mean
value (μ) (x-axis) (Guzzetti et al., 2006; Rossi et al., 2010).

The stepwise LR analysis was performed with SAS software and the
fitting performance analyses were conducted using the open-source
data analysis environment R (R Development Core Team, 2010) with
several packages as well as the script written by Rossi et al. (2010).

5. Results and discussion of the susceptibility modelling

5.1. Combinations of predictor variables and susceptibility scenarios

To support the selection of the four datasets (Table 3), Chi-square
(χ2) statistics were first applied to confirm the suggested association
between each predictor variable and the occurrence of gully initiation
(e.g. Van Den Eeckhaut et al., 2006; Geissen et al., 2007; Dewitte et al.,
2010). The Cramer's V statistics, based on the χ2 values, were then ap-
plied to test the strength and the type of association (Bonham-Carter,
1994). χ2 values correspond to an absolute measure of the association
and are useless in themselves, while the V index gives a standardized
value ranging between 0 and 1. The closer V is to 1, the stronger is the
association between the two variables (e.g., Achten et al., 2008;
Dewitte et al., 2010). The χ2 and Cramer's V statistics show that all the
predictor variables collected for the analysis are associated with gully
initiation, confirming significant difference between the distribution of
values for the cells affected by gully initiation and that for the stable
cells (Table 4). Potentially, all the predictor variables can be used for
the modelling; “TCI”, “SPI”, “contributing drainage area” and “slope gra-
dient” having, in this case, the highest predictive power.

The multicollinearity analysis was applied to the four datasets
(Table 3). It revealed that for Model ALL and Model ALL-Litho the
three TCI indices together with SPI had to be excluded from the LR anal-
ysis to reduce multicollinearity. For Model ALL-AS and Model ALL-AS-
Litho, the multicollinearity analysis revealed that among the three TCI
indices, the one derived from Nearing's equation TCIN (Nearing, 1997)
is the more suitable for this specific case. Even though it was expected
that only one of the three TCI has to be used to avoid multicollinearity,
the analysis highlights the index that considers more complex topo-
graphic conditions.

Except for the predictor variables excludedwith themulticollinearity
analysis, the LR functions did select all the remaining environmental var-
iables of each dataset as the combination of predictors for the presence
or absence of gully initiation in each grid cell (Table 3). The main differ-
ence between the four evaluations is therefore due to the pre-selection
of the variables that were inserted in the datasets. The presence or ab-
sence of lithology has no impact on themulticollinearity and limited im-
pact on the value of the coefficient, in agreementwith the lowCramer'sV
value (Table 4). On the other hand, the exclusion of drainage area and
slope gradient logically implies that the models are including the topo-
graphic indexes TCIN , SPI and TWI. In the four assessments, it can be
seen that, except for the intercepts, the sign of the coefficients remains
the same for eachpredictor variable andonly its value changes. This con-
sistency could be interpreted as a result of the stability of the approach.

5.2. Susceptibility maps

Fig. 3 portrays the maps obtained for the four LR estimations in
Table 3. The predicted gully susceptibility values are presented infive un-
equally spaced classes: [0.0–0.2); [0.2–0.45); [0.45–0.55); [0.55–0.80);
and [0.80–1.0] (e.g., Guzzetti et al., 2006; Van Den Eeckhaut et al.,
Fig. 5. Fitting performances of the four gully initiation susceptibility models presented in Table 3
(TN), false positives (FP), and false negatives (FN). (B, E, H, K) Receiver Operating Characterist
(AUC) value. In addition to the empirical ROC curve (black line), the binormal ROC curve (red l
prediction. (C, F, I, L) Success rate and prediction rate curves derived from the calibration and va
(probability N0.55) and non-susceptible (probability b0.45) areas.
2009; Rossi et al., 2010). The two classes below 0.45 correspond to low
susceptibility values, i.e. places that can be considered as stable. High sus-
ceptibility values are above 0.55 and are considered to be places prone to
gully initiation. The intermediate value class [0.45–0.55) around the de-
cision probability threshold value represents the undefined areas. The vi-
sual comparison of the four LR zonations reveals little differences in the
proportion covered by the susceptibility classes showing very similar
classification performances. Actually, ~10% of the pixels fall in the class
with the highest susceptibility values [0.80–1.0] and ~60% of them corre-
spond to low susceptibility values. The class corresponding to intermedi-
ate values [0.45–0.55) is of a limited extent, revealing a relatively good
classification performance of the models.

The results shown in Fig. 4 were evaluated quantitatively with the
four-fold plots, ROC curves, and success rate and prediction rate curves
(Fig. 5). Considering the number of grid cells correctly classified by the
four susceptibility models when the decision probability threshold is
set at 0.5 (Fig. 4A,D,G,J), Model ALL-AS preformed as the best. It classi-
fied correctly 79% (2333) of the total calibration sample as gully initia-
tion (TP = 1143, 39%) or stable (TN = 1190, 40%). However the four-
fold plots clearly shows that the predictive performance of the other
models, even though being lower, are quite similar. Model ALL-AS-
Litho (77%, 2292) performed better than Model All (76%, 2249) and
Model All-Litho (75%, 2215).

The results shown by the ROC curves (Fig. 5B,E,H,K) lead to a similar
conclusion. Model ALL-AS (AUC = 0.86) performs better, then Model
ALL-AS-Litho, Model ALL and Model All-Litho (AUC = 0.85, 0.84 and
0.83 respectively) follow. These differences are very marginal and, as a
general rule, AUC = 0.8–0.9 is considered excellent discrimination
(Hosmer and Lemeshow, 2000).

The success rate and prediction rate curves of the four models are
both very similar (Fig. 5C,F,I,L). At the probability threshold p = 0.55
that discriminates between susceptible and not susceptible areas, the
prediction rates are around 70%. For Model ALL-AS, the prediction rate
curve (red line) reveals that 72% of the area covered by gully initiation
is located in the 19% most susceptible area. This measure of the model
prediction skill shows also that Model ALL-AS performs the best.

Fig. 6 provides information on the uncertainty associated with the
gully susceptibility models. The plots and the fitted curves show similar-
ities and few differences. For the four classification models, the measure
of variation, (2σ), is the lowest for pixels classified as having high suscep-
tibility (probability≥ 0.80) and low susceptibility (probability≤0.20). It
indicates that the classification models consistently identified these
areas as prone to gully initiation or not. The scatter for the estimated er-
rors becomes larger for the intermediate values of the susceptibility (be-
tween 0.45 and 0.55), suggesting not only that the models were less
capable to classify these pixels as stable or unstable, but also that the ob-
tained estimates are more variable, and hence, less reliable (Guzzetti
et al., 2006; Van Den Eeckhaut et al., 2009; Rossi et al., 2010). All the
models are affected by a very similar uncertainty.

Based on the various quantitative evaluation criteria (Figs. 5 and 6),
Model ALL-AS provides the best data combination to predict the spatial
occurrence of gully initiation. However, the differences between the
four models are very small, which is probably due to the fact that
most of the information brought by the predictor variables is derived
from the same data source, therefore providing a similar input.
5.3. Geomorphological significance of the predictions

The quantitative evaluation of the fitting performances of the
models show that they all are reliable classifiers. In addition, the quite
. (A, D, G, J) Four-fold plots summarizing the number of true positives (TP), true negatives
ic (ROC) curves with various discrimination thresholds and the area under the ROC curve
ine) is also fitted. The diagonal line y= x represents the curve for a randomly constructed
lidation datasets respectively. Dashed vertical lines indicate area percentage for susceptible



Fig. 6. Susceptibility model error. For the four susceptibility models, the plots show the mean value of 200 probability estimates for each pixel (black circle) against the two standard de-
viations (2σ) of the probability estimate. The red line shows the estimated model error obtained by regression fit (least square method).
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similar modelling outputs attests the robustness of our approach. How-
ever, these quantitative estimates give no insight on how realistic they
are (Fielding and Bell, 1997). There is therefore a need to invoke geo-
morphological criteria for better assessing the reliability of the models.

The first criterion is the spatial pattern of the areas of the highest
susceptibility along the hillslopes and the gully channels; these areas
being the places that are supposed to predict the occurrence of gully ini-
tiation places. Since themaps resulting from themodels present fewdif-
ferences between each other (Fig. 4), the geomorphological discussion
is solely based on the map given by Model ALL-AS (Fig. 7), because of
its better fitting performance (Figs. 5 and 6). Fig. 7A reveals that the dis-
tribution of the susceptibility values and the areas of the highest proba-
bility are not uniformly and randomly distributed throughout the
watershed. If themodel had been efficient at predicting only the suscep-
tibility to gully erosion without any distinction between the initiation
places from the other parts of the channels, we could have expected
that the high susceptibility areaswould have shown a haphazard distri-
bution throughout the watershed since gullies are developed on most
slopes (Fig. 2). The observed pattern is a proof that the models allow
only some part of the gullies to be discriminated; which in this case
should correspond to the initiation areas.

Further inspection of the susceptibility map (Fig. 7B–D) allows us to
highlight three characteristics of the processes linked to gully initiation.
Thefirst one is linked to the caseswhen one or several highly susceptible
areas extend along the gullies. This is valid for both linear gullies and
more complex systems (Fig. 7C,D). This pattern agrees with the hypoth-
esis that some of these gullies can result from several initiations that de-
veloped independently at a series of knickpoints along the slope profile
and connected to each otherwhilemigrating (e.g., Pederson et al., 2006).

Another pattern corresponds to places where areas of high suscepti-
bility values concentrate.When it occurs within the central part (i.e. not
at the border) of the watershed (see Fig. 7D for example), this corre-
sponds to places of higher concentration of gullies. Note that these
gullies are generally shorter than the gullies that are assumed to have
developed from several initiations (Fig. 7C). This difference can be that
the former are developed closer to the small valley bottoms while the
latter are developed on the slopes of the main valleys (i.e. the general
slope lengths differs).

The third characteristic is identifiable at the ridges of the watershed,
along the rock outcrops, where high susceptible areas also tend to con-
centrate (see Fig. 7B for example). These areas are places with higher
slope gradients and where runoff from the rock outcrop areas can con-
centrate. They occur at the head of the gullies. Fig. 3D shows that several
initiation areas are present a bit downslope of the rock outcrops. In this
case we can assume that after their initiation, some of these gullies
might have extended by downslope migration. Since rock outcrops
should have a lower permeability than soil covered areas, we can imag-
ine that drainage from these places is important for the contribution to
water runoff that initiates the development of the channels.

Another criterion that needs to be pointed out is the geomorpholog-
ical significance of the predictor variables that are in the data combina-
tions (Dewitte et al., 2010). Although the best model, according to the
quantitative criteria, is Model ALL-AS, we remain cautious in stating
that one model is closer to the geomorphological reality than the
other, especially with regard to the various assumptions and simplifica-
tion of the landscape reality. In our approach we postulated that topog-
raphy is sufficient to predict gully initiation. Without the consideration
of potentially influencing variables like, for example, soil characteristics,
vegetation cover, and human-induced landscape dynamic parameters
(Vandekerckhove et al., 2000; Nyssen et al., 2002; Istanbulluoglu et al.,
2005; Nyssen et al., 2006; Lesschen et al., 2007; Takken et al., 2008;
GómezGutiérrez et al., 2009a), this simple approachmight result in pre-
diction errors (Vandekerckhove et al., 1998). In addition, the models
were not calibrated from data directly collected in the field.

Nevertheless, the modelling permits some geomorphological issues
to be highlighted (Table 3). It confirms some of our hypotheses

image of Fig.�6


Fig. 7. Susceptibility maps portrayingModel ALL-AS. Values closer to 1.0 show higher susceptibility to gully initiation. (B, C, D) Close-ups of gullies illustrating linear gullies (LG) and gully
systems (GS).

113O. Dewitte et al. / Geomorphology 228 (2015) 101–115
concerning the processes behind the gully initiation as it highlights the
importance of surface runoff and flow concentration through the inte-
gration of the predictors “planform curvature” and “Transport Capacity
Index” (Table 3); these two predictors being the first to be included in
the logistic regressions. The role of “slope gradient” is also confirmed
aswell as “elevation”. On the other hand, “slope aspect” is of smaller im-
portance in this context.

In addition, as also pointed out by Prosser and Abernethy (1996), the
simplification of our threshold approach assuming uniform vegetation
and soil properties across thewatershed does notmean that spatial var-
iation in soil and vegetation is unrelated to the pattern of gully initiation
susceptibility. The results merely imply that it is possible to constrain
gully initiation by considering topography alone. It is known that varia-
tion in soils and vegetation can be influenced by topography and there-
fore can be partially implicitly modelled (e.g., Xu et al., 2008).
6. Conclusions

The development of a quantitative method for mapping the suscep-
tibility to gully initiation in data-poor regions revealed the following
insights:

• Using published S–A data with a low-data demanding statistical
model like LR proves to be efficient when applied to common spatial
data. The method provides relevant results in terms of statistical reli-
ability and prediction performance.

• The use of average S–A information from the literature is an option
when no field data are available. Such an approach establishes a
methodology that allows similar studies to be undertaken else-
where where there is a lack of data, especially in regions difficult
to access. This could even have a potential application on Mars,

image of Fig.�7
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where gully erosion has already been the topic of numerous re-
search (e.g., Mest et al., 2010).

• Despite data simplification, topographic threshold assumptions, and
the non-consideration of soil characteristics, land use/cover condi-
tions and human-induced landscape changes, the approach allows a
better understanding of the gully processes in the region. It provides
insights into factors controlling gullying andmay allow the extrapola-
tion and prediction of this erosion process in unsurveyed similar
areas.

• The method provides information on the spatial pattern of the gully
occurrence for the investigated region. The resulting susceptibility
map is a useful tool for sustainable planning, conservation and protec-
tion of land from gully processes. Such a map could also be used by
hydrological modellers interested in calculating sediment budgets.

• Topographic indices derived from common spatial data are shown to
have the potential to be used for the location of gully initiation. This
might show newways for predicting soil erosion bywater at regional
scale since, so far, most erosion models do not predict the location of
gullies (Jetten et al., 2003; Poesen et al., 2011).

Our approach is based almost exclusively on topographic data, and
developed for permanent gullies in a specific Mediterranean semi-arid
watershed. Therefore, the model cannot be expected to perform well
in regions where land use (at the time of gully initiation) is highly var-
iable and hydrological connectivity varies both spatially and temporally.
The method, however, is worthy of applying to different climatic envi-
ronments, and may not be restrictive to a specific type of gully. It
could also be applied in a very similar way to ephemeral gullies.
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